Page 2 of 2 FirstFirst 12
Results 16 to 19 of 19

Math Help - Indexed Union of Countably Infinite Sets

  1. #16
    Senior Member
    Joined
    Nov 2010
    From
    Staten Island, NY
    Posts
    451
    Thanks
    2
    Quote Originally Posted by MoeBlee View Post
    What do you mean by that? An isomorphism involves two structures, not just two sets. Do you mean isomorphic with regard to the the structure <set membership>? Then, no, not all such structures where the sets are countable are isomorphic.

    What we do have is that any two denumerable (i.e., countably infinite) sets are equinumerous.
    In Model Theory, an isomorphism is a bijection which preserves all constants, functions and relations in the language. When talking about sets without any further structure, an isomorphism is simply a bijection since there are no other symbols in the language.
    Follow Math Help Forum on Facebook and Google+

  2. #17
    Senior Member
    Joined
    Feb 2010
    Posts
    466
    Thanks
    4
    Quote Originally Posted by Deveno View Post
    a set-isomorphism is just a fancy word for bijection
    I've not seen that terminology. I'll take your word for it, though I find it unnecessary to conflate bijection with isomorphism.

    Quote Originally Posted by Deveno View Post
    membership induces additional structure on sets (making a poset out of P(X)). "isomorphism" is essentially a categorical notion, not limited just to "sets with structure".
    Of course we can always ask

    whether <X membership_on_X> and <Y membership_on_Y> are isomorphic.

    And the partial ordering of PX by the subset relation is a separate matter. Yes, of course, if X and Y are equinumerous then

    <X subset_relation_on_PX> and <Y subset_relation_on_PY> are isomorphic.

    But you've not shown how that serves toward proving that a countable union of countable sets is countable.

    Quote Originally Posted by Deveno View Post
    explicitly, if you have a bijection between set A and set B, then saying whether of not A and B are the "same set" depends on your notion of "same". the typical categorical notion is that two sets of the same cardinality are indistiguishable.
    Not in ordinary set theory. X and Y are the same if and only if X and Y have the same members. X and Y may have the same cardinality, but that does not entail that X and Y are the same. Moreover that X and Y have the same cardinality does

    NOT entail that <X membership_on_X> and <Y membership_on_Y> are isomorphic.

    Quote Originally Posted by Deveno View Post
    are you aware of an example of two countably infinte sets with no lattice isomorphism of power sets between them?
    I didn't say anything about that in my previous post. But in this post I have said that yes, of course, if X and Y are equinumerous then

    <X subset_relation_on_PX> and <Y subset_relation_on_PY> are isomorphic.

    How that serves toward proving that a countable union of countable sets is countable is not stated by you.
    Last edited by MoeBlee; April 4th 2011 at 10:59 AM.
    Follow Math Help Forum on Facebook and Google+

  3. #18
    Senior Member
    Joined
    Feb 2010
    Posts
    466
    Thanks
    4
    Quote Originally Posted by DrSteve View Post
    When talking about sets without any further structure, an isomorphism is simply a bijection since there are no other symbols in the language.
    Isomorphism of models (structures for a language) is one kind of isomorphism. But in set theory there is the more general notion of a isomorphism comparing (1) a set X and relations and/or operations on X with (2) a set Y and relations and/or operations on Y. If you wish to say that where there are no specified operations or relations along with said set, then X and Y are isomorphic if and only if X and Y are equinumerous, then you're free to use the terminology that way, though personally I don't find that it adds clarity to the matter.
    Follow Math Help Forum on Facebook and Google+

  4. #19
    Senior Member
    Joined
    Nov 2010
    From
    Staten Island, NY
    Posts
    451
    Thanks
    2
    Quote Originally Posted by MoeBlee View Post
    Isomorphism of models (structures for a language) is one kind of isomorphism. But in set theory there is the more general notion of a isomorphism comparing (1) a set X and relations and/or operations on X with (2) a set Y and relations and/or operations on Y. If you wish to say that where there are no specified operations or relations along with said set, then X and Y are isomorphic if and only if X and Y are equinumerous, then you're free to use the terminology that way, though personally I don't find that it adds clarity to the matter.
    I agree - certainly using the word "bijection" is much less likely to cause confusion, especially since the language of set theory does have a relation symbol.
    Follow Math Help Forum on Facebook and Google+

Page 2 of 2 FirstFirst 12

Similar Math Help Forum Discussions

  1. Intersection of two countably infinite sets
    Posted in the Discrete Math Forum
    Replies: 1
    Last Post: March 22nd 2011, 07:30 PM
  2. Union of Two countably infinite sets
    Posted in the Discrete Math Forum
    Replies: 1
    Last Post: March 22nd 2011, 07:25 PM
  3. countably infinite / uncountable sets
    Posted in the Discrete Math Forum
    Replies: 5
    Last Post: February 9th 2010, 01:18 PM
  4. Replies: 20
    Last Post: October 15th 2008, 11:30 AM

Search Tags


/mathhelpforum @mathhelpforum