Let Ai= {..., -2, -1, 0, 1, ...i}. Find.
( Ai)
( Ai)
Please, please, learn to post in symbols? You can use LaTeX tags.
[tex]A_i = \left\{ { \cdots , - 2, - 1,0,1,2, \cdots ,i} \right\}[/tex] gives $\displaystyle A_i = \left\{ { \cdots , - 2, - 1,0,1,2, \cdots ,i} \right\}$.
Review what you posted. Is the set $\displaystyle A_i$ correct?
It not bounded below but it is bounded above.
[Hello, lm6485!
$\displaystyle \text{Let }\,A_i\:=\: \{\hdots\,\text{-}2,\,\text{-}1,\,0,\,1,\,\hdots\, i\}$
$\displaystyle \text{Find:}$
. . $\displaystyle (a)\;\begin{array}{c} _n \\ \bigcup \\ ^{i\,=\,1}\end{array}\!\!A_i $
$\displaystyle \begin{array}{c} _n \\ \bigcup \\ ^{i\,=\,1}\end{array}\!\!A_i \;=\; \{\hdots\,\text{-}2,\,\text{-}1,\,0,\,1\} $
. . . . . . $\displaystyle \cup \;\{\hdots\,\text{-}2,\,\text{-}1,\;0,\,1,\,2\}$
. . . . . . $\displaystyle \cup \;\{\hdots\,\text{-}2,\,\text{-}1,\;0,\,1,\,2,\,3\}$
. . . . . . . . . . . . . . . $\displaystyle \vdots$
. . . . . . $\displaystyle \cup \;\{\hdots\,\text{-}2,\,\text{-}1,\;0,\,1,\,2,\,3\,\hdots n\}$
$\displaystyle \text{Therefore: }\;\begin{array}{c} _n \\ \bigcup \\ ^{i\,=\,1}\end{array}\!\!A_i \;=\; \{\hdots\,\text{-}2,\,\text{-}1,\,0,\,1,\,2,\,3,\,\,\hdots n\}$
$\displaystyle (b)\;\begin{array}{c} _n \\ \bigcap \\ ^{i\,=\,1}\end{array}\!\!A_i$
$\displaystyle \begin{array}{c} _n \\ \bigcap \\ ^{i\,=\,1}\end{array}\!\!A_i \;=\; \{\hdots\,\text{-}2,\,\text{-}1,\,0,\,1\} $
. . . . . . $\displaystyle \cap \;\{\hdots\,\text{-}2,\,\text{-}1,\;0,\,1,\,2\}$
. . . . . . $\displaystyle \cap \;\{\hdots\,\text{-}2,\,\text{-}1,\;0,\,1,\,2,\,3\}$
. . . . . . . . . . . . . . . $\displaystyle \vdots$
. . . . . . $\displaystyle \cap \;\{\hdots\,\text{-}2,\,\text{-}1,\;0,\,1,\,2,\,3\,\hdots n\}$
$\displaystyle \text{Therefore: }\;\begin{array}{c} _n \\ \bigcap \\ ^{i\,=\,1}\end{array}\!\!A_i \;=\; \{\hdots\,\text{-}2,\,\text{-}1,\,0,\,1\}$