For your graph to be a tree then where = number of edges and v = number of vertices which is given to be 8.
To check you need to find the number of edges. where is the degree of each vertex. Does this equal ?
If a graph has
8 verticies:
2 with 1 degree
1 with 2 degrees
5 with 3 degrees.
If it is not a tree I must prove why.
The only way I can think of to do this is to draw the graph (which I can't replicate here).
When I draw the graph I find I have 2 non-trivial circuits, therefore the graph is not a tree.
Is this the only way to prove the graph is not a tree?
ok,
I understand that the edges = vertices -1 for a tree.
So for 8 vertices there should be 7 edges.
(I can draw this, bu t I get non-trivial circuits. Therefore not a tree)
But to prove it, I use
edge = vertices - 1.
edge = v1 degrees + v2 degrees... vn degrees
edge = 7
edge = 0.5 * (1+1+2+3+3+3+3+3)
= 0.5 * 19
= 9.5
7 != 9.5, therefore not a tree.
correct?
btw, thanks for taking the time to help pickslides.