Results 1 to 4 of 4

Math Help - Determine if this function is one to one

  1. #1
    Newbie
    Joined
    Mar 2010
    Posts
    11

    Determine if this function is one to one

    Let  f: R \rightarrow R be defined by  f(x) = x^3 + ax + 3 , where a is constant. Show that if  a \geq 0 , then f is one-to-one.


    I graphed this equation but I dont know what to do with it.... should I see its one to one.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Member
    Joined
    Mar 2010
    Posts
    75
    Quote Originally Posted by txsoutherngirl84 View Post
    Let  f: R \rightarrow R be defined by  f(x) = x^3 + ax + 3 , where a is constant. Show that if  a \geq 0 , then f is one-to-one.


    I graphed this equation but I dont know what to do with it.... should I see its one to one.
    To show something is one-to-one you need set x1=x2 and solve for x and try to get the same result on both sides....

    So you would:
    x1^3+ax1+3=x2^3+ax2+3 <- now you solve for X
    and try to end up with....
    x1=x2 <- if you are successfully able do that then it IS 1 to 1.

    Also, in your proof make sure to include "suppose that x1 and x2 are real numbers" and you need to satisfy the condition for ALL 'a' (so dont set a=to a number in your example).



    btw,
    Graphing 'one-to-one' and 'onto' problems help your understanding, but is a useless form of proof. If you are unsure if something is one-to-one or onto try to graph it. If it passes the 'vertical line' test it is one-to-one, if it passes the horizontal line-test is onto. So once you graph your line and run these tests then it can help you decide whether something is onetoone or onto. So then you know how to approach the problem and start your proof.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    MHF Contributor undefined's Avatar
    Joined
    Mar 2010
    From
    Chicago
    Posts
    2,340
    Awards
    1
    Quote Originally Posted by matthayzon89 View Post
    To show something is one-to-one you need set x1=x2 and solve for x and try to get the same result on both sides....

    So you would:
    x1^3+ax1+3=x2^3+ax2+3 <- now you solve for X
    and try to end up with....
    x1=x2 <- if you are successfully able do that then it IS 1 to 1.

    Also, in your proof make sure to include "suppose that x1 and x2 are real numbers" and you need to satisfy the condition for ALL 'a' (so dont set a=to a number in your example).



    btw,
    Graphing 'one-to-one' and 'onto' problems help your understanding, but is a useless form of proof. If you are unsure if something is one-to-one or onto try to graph it. If it passes the 'vertical line' test it is one-to-one, if it passes the horizontal line-test is onto. So once you graph your line and run these tests then it can help you decide whether something is onetoone or onto. So then you know how to approach the problem and start your proof.
    The part in red is incorrect. All functions pass the vertical line test, by definition. Passing the horizontal line test indicates one-to-one.

    Edit: apparently the suggested method in the quoted text is also unworkable or not preferred, but it seemed plausible at first glance so I didn't say anything. Plato's method is very straightforward, so go with that.
    Last edited by undefined; April 21st 2010 at 03:23 PM.
    Follow Math Help Forum on Facebook and Google+

  4. #4
    MHF Contributor

    Joined
    Aug 2006
    Posts
    18,607
    Thanks
    1574
    Awards
    1
    Come on all of you: f'(x)=3x^2+a\ge0.
    What does that tell you?
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Determine the function value
    Posted in the Algebra Forum
    Replies: 3
    Last Post: May 12th 2011, 09:27 AM
  2. Determine the end behavior of each function...?
    Posted in the Pre-Calculus Forum
    Replies: 7
    Last Post: September 15th 2010, 10:40 PM
  3. Determine is function is Analytic
    Posted in the Calculus Forum
    Replies: 3
    Last Post: May 8th 2010, 02:36 AM
  4. Determine whether the function is a solution of the DE?
    Posted in the Differential Equations Forum
    Replies: 6
    Last Post: January 31st 2010, 05:02 PM
  5. Determine the domain of this function
    Posted in the Pre-Calculus Forum
    Replies: 10
    Last Post: November 12th 2009, 08:35 AM

Search Tags


/mathhelpforum @mathhelpforum