Prove that n! > 2^n for every integer n greather than or equal to 4.

This is what I have so far.

Proof: Since 4! > 2^4 the statement is true for n greater than or equal to 4. Assume k!>2^k for some positive integer k. Observe: (k+1)! > 2^(k+1).

I am doing okay with math induction with equal signs and not greater or less than signs. Can any one help?