Results 1 to 5 of 5

Math Help - Help choosing best way to prove logic problem

  1. #1
    Newbie piyourface166's Avatar
    Joined
    Feb 2010
    From
    Pittsburgh
    Posts
    14

    Help choosing best way to prove logic problem

    Ok I don't need answers just a little shove in the right direction. It's not an incredibly hard logic problem, I just want to know the best route to take to prove it. Here's the question,

    If 'R' and 'S' are irrational then R^S is irrational.

    I was thinking contra-positive would be best. So assume not P and prove not Q. So this means I would have 'R' and 'S' are rational and prove that R^S is rational. I know that if a number is rational then it can be represented by two integers (m/n) but I'm just not sure how to work that in to get my proof solid. Thanks in advanced.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor Drexel28's Avatar
    Joined
    Nov 2009
    From
    Berkeley, California
    Posts
    4,563
    Thanks
    21
    Quote Originally Posted by piyourface166 View Post
    Ok I don't need answers just a little shove in the right direction. It's not an incredibly hard logic problem, I just want to know the best route to take to prove it. Here's the question,

    If 'R' and 'S' are irrational then R^S is irrational.

    I was thinking contra-positive would be best. So assume not P and prove not Q. So this means I would have 'R' and 'S' are rational and prove that R^S is rational. I know that if a number is rational then it can be represented by two integers (m/n) but I'm just not sure how to work that in to get my proof solid. Thanks in advanced.
    I completely disagree. Let R=e,S=\ln(2). Both are irrational but R^S=2
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Newbie piyourface166's Avatar
    Joined
    Feb 2010
    From
    Pittsburgh
    Posts
    14
    That's a good example. So I know that we have AT LEAST one example, I'm sure more, than we can prove it is true. My problem still is what is my best bet to write a proof for this. If the question was to show and example or prove this true or false for one example that would work. My issue is I'm not sure what to do for my next step in proving that for 'the universe' of all irrational numbers this is true.

    My point is I can show that there is a false one to, for example:
    (Root2 ^ Root3) is going to be irrational.

    You showed an example that makes two irrationals a rational number, so obviously this problem is going to be false because that right there is a contradiction. What do you think the best method of proving would be to finish this? P and not Q, then show an example???
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Newbie piyourface166's Avatar
    Joined
    Feb 2010
    From
    Pittsburgh
    Posts
    14
    I got it, thanks!
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Super Member
    Joined
    Aug 2009
    From
    Israel
    Posts
    976
    Quote Originally Posted by piyourface166 View Post
    That's a good example. So I know that we have AT LEAST one example, I'm sure more, than we can prove it is true. My problem still is what is my best bet to write a proof for this. If the question was to show and example or prove this true or false for one example that would work. My issue is I'm not sure what to do for my next step in proving that for 'the universe' of all irrational numbers this is true.

    My point is I can show that there is a false one to, for example:
    (Root2 ^ Root3) is going to be irrational.

    You showed an example that makes two irrationals a rational number, so obviously this problem is going to be false because that right there is a contradiction. What do you think the best method of proving would be to finish this? P and not Q, then show an example???
    I don't understand. Drexel28's example obviously shows this claim to be false, hence there can be no valid proof for it! The fact that you were asked to prove a wrong claim does not make it right (or provable).


    By the way, you have your contra-positive the wrong way. If you want to prove  p \Rightarrow q by contra-positive, you need to prove that if q doesn't hold then neither does p; that is, in this case, you would assume that R^S is rational, and show that either R or S are rational as well.
    Last edited by Defunkt; March 1st 2010 at 11:58 PM.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Choosing problem
    Posted in the Discrete Math Forum
    Replies: 4
    Last Post: November 18th 2010, 01:09 PM
  2. Replies: 2
    Last Post: February 24th 2010, 01:34 PM
  3. Replies: 1
    Last Post: March 27th 2009, 06:43 AM
  4. logic prove
    Posted in the Discrete Math Forum
    Replies: 1
    Last Post: November 28th 2007, 08:55 AM
  5. Replies: 3
    Last Post: October 17th 2007, 10:41 PM

Search Tags


/mathhelpforum @mathhelpforum