I need help understanding contradiction. I know that you are supposed to negate the conclusion of the problem. But after that, I am unsure of what to do next. Here is a practice problem I have:

Prove the following statement by contradiction: “if integers x, y, z satisfy x + y + z >= 11, then either x >= 4, or y >= 4, or z >= 5.”

The hypothesis is: if integers x, y, z satisfy x + y + z >= 11
The conclusion is: then either x >= 4, or y >= 4, or z >= 5

The negated conclusion is: then x < 4, and y < 4, and z < 5

At this point I am unsure of what to do next. Am I supposed to find the numbers for x, y, z to satisfy the negated conclusion. If I use X = 3, y =3, and z = 4, I get 3 + 3 + 4 = 10. 10 < 11.

Did I just solve the problem because all I have to do is find one way to satisfy the negated conclusion which in turn proves the real conclusion? Or did I totally miss something?

3. So, all you have to do to solve a contradiction problem is to satisfy the negated conclusion?

Thank you for making the clarification. It makes life easier actually knowing what you are supposed to do.

4. Originally Posted by ravensfan
So, all you have to do to solve a contradiction problem is to satisfy the negated conclusion?

.

Definitely not ,but by assuming the negated conclusion you ended up with:

x+y+z=10

But x+y+z $\geq 11$ ,hence $10\geq 11$

But we know that it is not true that $10\geq 11$,hence $\neg (10\geq 11)$.

Can you see now the contradiction??

Now you have to wander ,how the contradiction between two statements i.e ( p and notp ,in our case p= $10\geq 11$) lead us to the desired result ,which in our case is:

$x\geq 4$ or $y\geq 4$ or $z\geq 5$

5. Originally Posted by ravensfan
I need help understanding contradiction. I know that you are supposed to negate the conclusion of the problem. But after that, I am unsure of what to do next. Here is a practice problem I have:

Prove the following statement by contradiction: “if integers x, y, z satisfy x + y + z >= 11, then either x >= 4, or y >= 4, or z >= 5.”

The hypothesis is: if integers x, y, z satisfy x + y + z >= 11
The conclusion is: then either x >= 4, or y >= 4, or z >= 5

The negated conclusion is: then x < 4, and y < 4, and z < 5

At this point I am unsure of what to do next. Am I supposed to find the numbers for x, y, z to satisfy the negated conclusion. If I use X = 3, y =3, and z = 4, I get 3 + 3 + 4 = 10. 10 < 11.

Did I just solve the problem because all I have to do is find one way to satisfy the negated conclusion which in turn proves the real conclusion? Or did I totally miss something?