Originally Posted by
chocaholic A group of 30 people consists of 15 men and 15 women. Each of the 30 choose one cooldrink from 10 types:
(1) How many ways could they do this? (I'm thinking 10^30?)
(2) How many different combinations of cooldrinks could be ordered from the cafeteria where you don't care who gets which but only want to get the number of each type right? (is this in terms of n because they don't tell us the number of each type? Formula?I don't understand this question)
Given the group orders
15 of type 1
6 of type 2
3 of type 3
6 of type 4
(3)In how many different ways can I distribute the cooldrinks amongst the 30 people if I don't care who ordered what?(30! ways?)
(4) What is the probability that a random division of the cooldrink amongst the 30 people give each what they ordered?