Let G10 be a simple graph of 10 vertices, and G10' its complement. As we know, the relationship between 10G and 10G is as follows: (1) they have the identical set of vertices; (2) two distinct vertices are adjacent in G10' if, and only if, they are not adjacent in 10G. Prove that 10G cannot be isomorphic to G10'.
Please help!!!! (G10 means G with a subscript of 10)