Prove that 1+2n <= 3^n by using mathematical induction.
Hello UC151CPRFirst, note that for $\displaystyle n\ge0, 3^n\ge1$
$\displaystyle \Rightarrow 2\cdot3^n\ge 2$ (1)
Then suppose that $\displaystyle P(n)$ is the propositional function $\displaystyle 1+2n\le 3^n$
Then $\displaystyle P(n) \Rightarrow 1+2n + 2 \le 3^n+2$
$\displaystyle \Rightarrow 1 +2(n+1) \le 3^n + 2\cdot3^n$, using (1)
$\displaystyle \Rightarrow 1 +2(n+1) \le 3^n(1+2)=3^{n+1}$
So $\displaystyle P(n) \Rightarrow P(n+1)$
$\displaystyle P(1)$ is $\displaystyle 1+2\le3^1$, which is true.
Hence by Induction, $\displaystyle P(n)$ is true for all $\displaystyle n \ge1$
Grandad