Suppose R is an equivalence relation on X={a,b,c,d,e} which produces the partition S={ (a,b), (c,d), (e) }. Find the matrix of R. Find the matrix of R^2
Is this what that means?
$\displaystyle \begin{array}{ccccccc}
{} & {|} & a & b & c & d & e \\
\hline
a & {|} & 1 & 1 & 0 & 0 & 0 \\
b & {|} & 1 & 1 & 0 & 0 & 0 \\
c & {|} & 0 & 0 & 1 & 1 & 0 \\
d & {|} & 0 & 0 & 1 & 1 & 0 \\
e & {|} & 0 & 0 & 0 & 0 & 1 \\ \end{array} $
Or does it mean to square that matrix?