1. ## Complex line integral

I must find the value of $\int _{C} z^{-1+i} dz$, where the integrand is such that $0<\arg z<2\pi$ and $C$ is the positively oriented circle of radius 1.

My attempt : First I parametrize $C$ by $\gamma (t)=\cos t +i \sin t$.
Second, I try to find $f'(z)$. The only method I know is to use the definition : $f'(z)=\lim _{h \to 0}\frac{(z+h)^{-1+i}-z^{-1+i}}{h}$. I don't know how to calculate this limit... I'd like a hint.
Thanks!

2. Hi there!

Let

$\gamma : [a,b]\rightarrow C$
$t\rightarrow\gamma(t)$

be a rectifiable, smooth enough curve. Then we have:

$\int_{\gamma}f(z)dz=\int^b_af(\gamma(t))\dot\gamma dt$

You parametrisation is correct, try also applying to it the Euler formula.

Find out about the Cauchy-Riemann differential equations (if you think you'll need a differentiation of the integrand function).

For the integral, check out when a holomorphic function has an antiderivative and most importantly - WHERE.

3. Nothing is being said about the multifunction-ness of the integrand. I'm kinda' rusty, but this is how it looks to me:

The function $f(z)=z^{-1+i}$ is a multifunction with an infinite number of overlapping sheets, and the description above does not distinguish which sheet the integration is being performed over. I would write:


\begin{aligned}
z^{-1+i}&=e^{[(-1+i)\left[\ln|z|+i(arg(z)+2k\pi)\right]} \\
&=e^{[2k\pi i(-1+i)]}z^{-1+i}
\end{aligned}

with $z^{-1+i}=e^{i\, arg(z)(-1+i)},\quad 0.

For example, take $C$ as a section of the unit circle starting at $z_0=e^{\pi i/4}$ and ending at $z_1=e^{7\pi i/4},$ then the integrand is analytic over any contiguous section of the multifunction over $C,$ so I can use antiderivatives:


\begin{aligned}
\mathop\int\limits_{C} z^{-1+i}dz&=e^{2k\pi i(-1+i)}\mathop\int\limits_{C} z^{-1+i}dz,\quad 0 &=e^{2k\pi i(-1+i)}\left(\frac{1}{i}\;z^{i}\Biggr|_{z_0}^{z_1}\r ight) \\
&=-ie^{2k\pi i(-1+i)}\left(z_1^i-z_0^i\right) \\
$\mathop\int\limits_{C}z^{-1+i}dz=-i e^{2k\pi i(-1+i)}\left(e^{-7\pi/4}-e^{-\pi/4}\right),\quad k\in\mathbb{Z}$
I must find the value of $\int _{C} z^{-1+i} dz$, where the integrand is such that $0<\arg z<2\pi$ and $C$ is the positively oriented circle of radius 1.
My attempt : First I parametrize $C$ by $\gamma (t)=\cos t +i \sin t$.
That's a good start, but I would keep to complex exponentials and write the parametrisation as $z=e^{it}$. Then $dz = ie^{it}dt$ and $z^{-1+i} = \bigl(e^{it}\bigr)^{-1+i} = e^{-t}e^{-it}$. The integral then becomes $\oint _{C} z^{-1+i} dz = \int_0^{2\pi}\!\!\!e^{-t}e^{-it}ie^{it}dt = i\!\!\int_0^{2\pi}\!\!\!e^{-t}dt$, which I guess should give you no trouble.