Results 1 to 2 of 2

Math Help - Complex Power Series Boundary Property

  1. #1
    Newbie
    Joined
    Jun 2009
    Posts
    3

    Post Complex Power Series Boundary Property

    In Shilov's Elementary Real and Complex Analysis, he writes on page 216:

    'As we know, a (complex) power series a0 + a1 (z - z0) + a2 (z - z0)^2 + ... with radius of convergence p may or may not converge at points on the boundary of its region of convergence, i.e., at points of the circle |z - z0| = p. However, if the series converges at a boundary point z1, then it converges uniformly on the whole segment going from the center of the circle z0 to the boundary point z1. To see this, we need only consider the case z0 = 0, z1 = t1 > 0 (here z1 = t1 is real, as opposed to the general case where it is complex). Why?"

    He then goes on to prove the special case with z0 = 0 and z1 = t1 > 0. Why does having proved this special case imply the general case for any point on the boundary of a region of convergence centered at any complex point? I think it may have something to do with shifting the power series and dividing/multiplying, but I'm not sure quite how to make it work.
    Last edited by skeboy; July 2nd 2009 at 08:44 PM.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Member
    Joined
    Mar 2009
    Posts
    91
    Suppose you have a complex power series \sum_{n=0}^\infty b_n(z-z_0)^n with radius of convergence R>0 which converges at some point z_1 on the boundary of the disk D=D(z_0,R). By shifting and rotating the axes, you obtain another power series \sum_{n=0}^\infty a_nz^n with radius of convergence R which converges at the point z=R. (If z_1=z_0+R\mathrm e^{\mathrm i\theta} then a_n=b_n\mathrm e^{\mathrm in\theta}.)

    Now you need Abel's test: Let f_n be a sequence of complex functions on a set A and let g_n be a decreasing sequence of non-negative functions on A. If the series \sum_{n=0}^\infty f_n converges uniformly on A and if there is a constant M such that |g_n(x)|\leq M for every x\in A and for all non-negative integers n, then \sum_{n=0}^\infty f_ng_n converges uniformly on A.

    In this case, let A=[0,R], and for x\in A let f_n(x)=a_nR^n and g_n(x)=(x/R)^n.

    By hypothesis, the series \sum_{n=0}^\infty a_nR^n is convergent, so \sum_{n=0}^\infty f_n(x) converges uniformly on A. Also |g_n(x)|\leq 1 for all n and for all x\in A.

    By Abel's test, the series \sum_{n=0}^\infty f_n(x)g_n(x)=\sum_{n=0}^\infty a_nR^n(x/R)^n=\sum_{n=0}^\infty a_nx^n converges uniformly on [0,R].

    Thus the original series is uniformly convergent on the radius of D from z_0 to z_1.

    Will this do?
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Complex Power Series
    Posted in the Calculus Forum
    Replies: 2
    Last Post: April 20th 2010, 09:55 AM
  2. Complex Power Series
    Posted in the Calculus Forum
    Replies: 1
    Last Post: February 10th 2010, 03:27 AM
  3. Power series (Complex)
    Posted in the Calculus Forum
    Replies: 1
    Last Post: September 25th 2008, 03:23 PM
  4. complex power series
    Posted in the Calculus Forum
    Replies: 1
    Last Post: September 23rd 2008, 11:10 AM
  5. Complex power series help
    Posted in the Calculus Forum
    Replies: 2
    Last Post: March 30th 2008, 06:27 AM

Search Tags


/mathhelpforum @mathhelpforum