Originally Posted by

**lllll** Given $\displaystyle f_n(x) \rightarrow F$ pointwise on a domain $\displaystyle D$, where each $\displaystyle f_n(x)$ is monotone (either increasing or decreasing) on $\displaystyle D$, show that $\displaystyle F$ is monotone on $\displaystyle D $.

so what I have is:

assume that f_n(x) is monotone increasing then:

$\displaystyle f_{n+1}(x) \geq f_x(n) $ therefore $\displaystyle f_{n+1}(x) -f_x(n) \geq 0$

No. The function f_n(x) is increasing in x, not n. The definition should be that if y>x then f(y)>f(x).

by definition (the one that I am using) a function is pointwise convergent if and only if $\displaystyle \lim_{n\rightarrow \infty} f_n(x) = F(x)$ and if and only if given an $\displaystyle \varepsilon >0 \ \exists \ n_0$ (dependent on both $\displaystyle \varepsilon $ and $\displaystyle x$) $\displaystyle \in \ \mathbb{N}$ such that $\displaystyle |f_n(x)-F(x)|<\varepsilon$

so based on that if I let:

$\displaystyle \lim_{n\rightarrow \infty} f_n(x) = F(x)$ (correct) and $\displaystyle \lim_{n\rightarrow \infty} f_{n+1}(x) = F'(x)$ No. This should be $\displaystyle \color{red}\lim_{n\rightarrow \infty} f_n(y) = F(y)$