Lemma. Let , and let be a function. Let be a partition of , and let be a real number. Suppose that whenever and are Riemann sums of on , then . Then these statements follow:

1. is bounded on .

2.

3. If is any refinement of , and and are Riemann sums, then

Proof.(1) Suppose is unbounded. Then there is a sequence in that converges to such that for every , . Then the set of Riemann sums of corresponding to is an unbounded set of real numbers. (2) and don't have to be Riemann sums. And since we are taking a "maximum" difference, we can get to . (3) I think that . And so the inequaliy follows.

Is this correct?