Results 1 to 2 of 2

Thread: Local base

  1. #1
    Sep 2008

    Local base

    Let $\displaystyle B$ be a local base for a topological vector space $\displaystyle X$. Let $\displaystyle U$ be a neighborhood of 0 in $\displaystyle X$. Show that $\displaystyle \cap_{W \in B} (U \cap W) = \cap_{W \in B} W$.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    tah is offline
    Junior Member
    Feb 2009
    Obviously, $\displaystyle \cap_{W\in B}(U\cap W)\subseteq\cap_{W\in B}W$.
    Let $\displaystyle x\in \cap_{W\in B}W$ and $\displaystyle O\in B$ such that $\displaystyle O\subseteq U$ (definition) then $\displaystyle x\in O\subseteq U$ i.e. $\displaystyle x\in U\cap W$ for any $\displaystyle W\in B$
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 1
    Last Post: Dec 13th 2011, 04:21 AM
  2. local man, local min, inflection point problem
    Posted in the Calculus Forum
    Replies: 2
    Last Post: Apr 27th 2011, 11:44 PM
  3. Replies: 4
    Last Post: Mar 21st 2011, 01:23 AM
  4. Replies: 6
    Last Post: Jan 5th 2011, 02:34 AM
  5. Replies: 1
    Last Post: Mar 7th 2010, 06:14 PM

Search Tags

/mathhelpforum @mathhelpforum