For anyone thats interested:

public

**class** Tetrahedron {

/*

The standard equation for points on a sphere will be used:

x = r * cos(theta) * cos(phi)

y = r * sin(theta) * cos(phi)

z = r * sin(phi)

x^2 + y^2 + z^2 = 1 for the unit sphere

The angle theta goes around the equator 0 to 360 degrees, 0 to 2Pi

The angle phi goes from north pole 90 to -90 degrees, Pi/2 to -Pi/2

Radians = Pi * (angle_in_degrees) / 180

*/

**public** ArrayList<GL_Vertex> verts = **new** ArrayList();

**public** ArrayList<GL_Triangle> tris = **new** ArrayList();

**double**Pi = 3.141592653589793238462643383279502884197;

**double**phiaa = -19.471220333; /* the phi angle needed for generation */

**public** Tetrahedron(){

**for**(**int** i = 0; i<4; i++)

{

GL_Vertex v = **new** GL_Vertex();

verts.add(v);

}

**double** r = 1.0; /* any radius in which the polyhedron is inscribed */

**double** phia = Pi*phiaa/180.0; /* 1 set of three points */

**double** the120 = Pi*120.0/180.0;

**double** the = 0.0;

verts.get(0).pos.x = (**float**) 0.0;

verts.get(0).pos.y = (**float**) 0.0;

verts.get(0).pos.z = (**float**) r;

**for**(**int** i=1; i<4; i++)

{

verts.get(i).pos.x =(**float**) (r*Math.*cos*(the)*Math.*cos*(phia));

verts.get(i).pos.y =(**float**) (r*Math.*sin*(the)*Math.*cos*(phia));

verts.get(i).pos.z =(**float**) (r*Math.*sin*(phia));

the = the+the120;

}

**for**(**int** i=0; i<4; i++){

System.*out*.println(verts.get(i).toString());

}

GL_Triangle tri0 = **new** GL_Triangle(verts.get(0), verts.get(1), verts.get(2));

GL_Triangle tri1 = **new** GL_Triangle(verts.get(0), verts.get(2), verts.get(3));

GL_Triangle tri2 = **new** GL_Triangle(verts.get(0), verts.get(3), verts.get(1));

GL_Triangle tri3 = **new** GL_Triangle(verts.get(1), verts.get(2), verts.get(3));

tris.add(0, tri0);

tris.add(1, tri1);

tris.add(2, tri2);

tris.add(3, tri3);

/* map vertices to 4 faces */

//polygon(0,1,2);

//polygon(0,2,3);

//polygon(0,3,1);

//polygon(1,2,3);

//Length of every edge 1.6329932 */

}

}

Based on algorithm from : Regular Polyhedron Generators