Let g be a metric on the S^2 which is close to the standard metric \gamma, i.e. \sup_{\theta \in S^2}\vert g - \gamma \vert \leq \varepsilon for some \varepsilon small, where \vert \cdot \vert is the norm with respect to \gamma (say). Is there an easy way of showing that the volume forms are close? Or even \vert Area(S^2,g) - Area(S^2,\gamma) \vert \leq C \varepsilon?