Hi there! I'm new around so please feel free to correct me on forum ettiquete here!
I am modelling a cylinder that changes volume but retains a constant surface area across a range of dimensions. With an increase in volume the cylinder decreases in length and increases in radius and vice versa for a decrease in volume.
So far:
S=2pi*r(r+h) - Surface area of a cylinder (eq1)
V=pi*r^{2}h - Volume of cylinder (eq2)
Rearanging volume for height: h=V/(pi*r^2) (eq3)
Substituting eq3 into eq1 yields:
S=2pi*r(r+V/(pi*r^{2}) = 2pi*r^{2}+2/(V*r) = 2(V*pi*r^{3}+1)/(V*r) (eq4)
After failed attempts to rearrange eq4 and solve for r, I have tried a symbolic solve with matlab but the result is incredibly messy!
Would anyone be able to offer any help as to how I may solve this problem as I expect that the method that I am trying to use is not the best for the job!
Thanks in advance!