Results 1 to 4 of 4
Like Tree2Thanks
  • 2 Post By johnsomeone

Math Help - Homeomorphic sets.

  1. #1
    Newbie
    Joined
    Jul 2011
    Posts
    15

    Homeomorphic sets.

    Please show that [0,1)x[0,1) is homeomorphic to [0,1]x[0,1). Thank you...
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Behold, the power of SARDINES!
    TheEmptySet's Avatar
    Joined
    Feb 2008
    From
    Yuma, AZ, USA
    Posts
    3,764
    Thanks
    78

    Re: Homeomorphic sets.

    Quote Originally Posted by seventhson View Post
    Please show that [0,1)x[0,1) is homeomorphic to [0,1]x[0,1). Thank you...
    Use the mapping

    \mathbf{F}(x,y)=y\mathbf{i}+x\mathbf{j}

    Now you need to show that the function is continous, 1-1 and onto, and that the inverse is continuous.

    For the last part use the fact that the function maps open sets to open sets.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Super Member
    Joined
    Sep 2012
    From
    Washington DC USA
    Posts
    525
    Thanks
    146

    Re: Homeomorphic sets.

    Quote Originally Posted by TheEmptySet View Post
    Use the mapping

    \mathbf{F}(x,y)=y\mathbf{i}+x\mathbf{j}
    That isn't going to work. I think you saw [0,1)x[0,1] and [0,1]x[0,1). It's [0,1]x[0,1) and [0,1)x[0,1).
    Last edited by johnsomeone; October 8th 2012 at 05:44 AM.
    Thanks from emakarov and TheEmptySet
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Super Member
    Joined
    Sep 2012
    From
    Washington DC USA
    Posts
    525
    Thanks
    146

    Re: Homeomorphic sets.

    Homeomorphic sets.-homeo.gif
    There are a ton of ways to do this. The common approach is to rely on expansions and contractions of line segments, and note that they're not merely continuous, but are also continuous in their parameters.
    i.e. For (a,b) -> (c,d), use h(t) = ( (d-c)/(b-a) ) (t-a) + c.
    If a, b, c, and d are continous functions in s, then H(t,s) is continuous (so long as b(s) = a(s) never happens).

    In the diagram above, the f homeomorphism is from the square to the disk. It's just an expansion from the blue segment of the square to the green radius of the circle. It leaves fixed the 4 diagnoals from the center to a vertex, which happen to be radii. Note that the actual homeomorphisms in the diagram are restrictions of f and f inverse.

    The g homeomorphism maps the circle to the circle by, in polar coordinates, expanding the angle in over one range, and contracting it over another. It leaves the center fixed. The definition of g will be split into cases, but equal where those cases overlap. Thus, although g is obviously continuous, you'd need to invoke a proposition about the continuity of such split cases to prove that g is continuous. Also, g's continuity at the origin might seem problematic (generally, where the "twisting all comes together" is a bad spot), but is actually trivial to show, as every open ball centered at the origin is invariant under g.

    If you're asked to explicitly write down a homeomorphism, you should be able to do so with these functions. If a full proof is required, you might want to establish that they're homeomorphisms by looking at the "solid" maps, and then use that a continuous bijection from a compact space to a Hausdorff space is a homeomorphism. Then show that the restrictions to those specific spaces are still bijections. You could also do it by explicitly writing out the inverses.

    Again, my solution is FAR from the only way to do this problem.
    Last edited by johnsomeone; October 8th 2012 at 06:18 AM.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. R^2 and R^2 - {(0,0)} are not homeomorphic
    Posted in the Differential Geometry Forum
    Replies: 6
    Last Post: April 6th 2011, 09:13 AM
  2. Homeomorphic spaces
    Posted in the Differential Geometry Forum
    Replies: 2
    Last Post: February 21st 2010, 09:18 AM
  3. Homeomorphic finer topology
    Posted in the Differential Geometry Forum
    Replies: 1
    Last Post: February 24th 2009, 10:27 PM
  4. homeomorphic quotient spaces
    Posted in the Advanced Algebra Forum
    Replies: 1
    Last Post: February 21st 2009, 07:51 AM
  5. Klein bottle, homeomorphic
    Posted in the Advanced Algebra Forum
    Replies: 0
    Last Post: January 16th 2009, 06:14 PM

Search Tags


/mathhelpforum @mathhelpforum