Help me please with this one:
Let $\displaystyle f(z)$ be an entire function and:
$\displaystyle \left | f(2z)-f(z) \right |\leq c $ $\displaystyle \forall z\in \mathbb{C}$.
Prove that $\displaystyle f$ is constant.
Thanks!
Help me please with this one:
Let $\displaystyle f(z)$ be an entire function and:
$\displaystyle \left | f(2z)-f(z) \right |\leq c $ $\displaystyle \forall z\in \mathbb{C}$.
Prove that $\displaystyle f$ is constant.
Thanks!