1. ## finding the limit.

How do I prove that the limit of the function

$limit_{n\rightarrow \infty}(x_1^n+x_2^n+x_3^n+.....+x_k^n)^{(1/n)}$

where $0 is equal to $max\{x_1,x_2,.....,x_k\}$

thanks for any help

solution

using the sandwich theorem:

denoting $x_m=max\{x_1,x_2,.....,x_k\}$ we have

$\{x_1^n+x_2^n+.....x_k^n\}^{1/n} =x_m\{(\frac{x_1}{x_m}^n+.....+1+....(\frac{x_k}{x _m})^n\}\leq x_m(k)^{(1/n)}$

and $Limit_{n\rightarrow\infty}x_m(k)^{(1/n)}=x_m$ (this is the upper bound)

$x_m\{(\frac{x_1}{x_m}^n+.....+1+....(\frac{x_k}{x_ m})^n\}\geq x_m$

and $Limit_{n\rightarrow\infty}x_m=x_m$

so by the sandwich theorem we have that $limit_{n\rightarrow \infty}(x_1^n+x_2^n+x_3^n+.....+x_k^n)^(1/n)=x_m$

Solved this after I posted it (I think)

2. ## Re: finding the limit.

Originally Posted by hmmmm
How do I prove that the limit of the function

$\lim_{n\rightarrow \infty}(x_1^n+x_2^n+x_3^n+.....+x_k^n)^{(1/n)}$

where $x_1,x_2,.....,x_k\leq 1$ is equal to $max\{x_1,x_2,.....,x_k\}$

thanks for any help

solution

using the sandwich theorem:

denoting $x_m=max\{x_1,x_2,.....,x_k\}$ we have

$\{x_1^n+x_2^n+.....x_k^n\}^{1/n} =x_m\{(\frac{x_1}{x_m}^n+.....+1+....(\frac{x_k}{x _m})^n\}\leq x_m(k)^{(1/n)}$

and $\lim_{n\rightarrow\infty}x_m(k)^{(1/n)}=x_m$ (this is the upper bound)

$x_m\{(\frac{x_1}{x_m}^n+.....+1+....(\frac{x_k}{x_ m})^n\}\geq x_m$

and $\lim_{n\rightarrow\infty}x_m=x_m$

so by the sandwich theorem we have that $limit_{n\rightarrow \infty}(x_1^n+x_2^n+x_3^n+.....+x_k^n)^(1/n)=x_m$

Solved this after I posted it (I think)
Is $0 < x_1,x_2,.....,x_k$?

3. ## Re: finding the limit.

yes sorry I just missed that out, will edit it now thanks very much