# Thread: Find the supremum and infimum of the following set

1. ## Find the supremum and infimum of the following set

Let A = {n^2/2^n | n in N}. Find the supremum and infimum, proving your assertions.

Attempt at Solution

SupA:

The highest term in the set is 9/8 and thus it is the supremum, by definition.

InfA:

The terms in the set approach 0 as n becomes arbitrarily large. It is clear that 0 < n^2/2^n for all n, thus, 0 is a lower bound.

I'm not sure how to prove that 0 is the infimum. Can someone lead me in the right direction?

2. ## Re: Find the supremum and infimum of the following set

Originally Posted by My Little Pony
Let A = {n^2/2^n | n in N}. Find the supremum and infimum, proving your assertions.
InfA:
The terms in the set approach 0 as n becomes arbitrarily large. It is clear that 0 < n^2/2^n for all n, thus, 0 is a lower bound.
I'm not sure how to prove that 0 is the infimum. Can someone lead me in the right direction?
You have already shown that 0 is a lower bound for the set.
Now show if $c>0$ then there is a $k\in\mathbb{N}$ such that $0<\frac{k^2}{2^k}.
Thus proving that no number greater that 0 is a lower bound.
That can be done by using the fact that $\left(\frac{n^2}{2^n}\right)\to 0.$