$\displaystyle f(x)$ is two times diff. function on $\displaystyle (0, \infty)$ .

$\displaystyle \lim\limits_{x\rightarrow \infty} f(x) = 0$ satisfy.

$\displaystyle M=\sup\limits_{x>0}\vert f^{\prime \prime} (x) \vert$ satisfy

. for each integer $\displaystyle L$ ,

$\displaystyle g(L) = \sup\limits_{x\geq L} \vert f(x) \vert$, and $\displaystyle h(L) = \sup\limits_{x\geq L} \vert f^{\prime}(x) \vert$. for any $\displaystyle \delta > 0$, SHOW

$\displaystyle h(L) \leq \dfrac{2}{\delta} g(L) + \dfrac{\delta}{2}M$.

please helppppp...