f(x) is two times diff. function on (0, \infty) .
 \lim\limits_{x\rightarrow \infty} f(x) = 0 satisfy.
M=\sup\limits_{x>0}\vert f^{\prime \prime} (x) \vert satisfy
. for each integer L ,
g(L) = \sup\limits_{x\geq L} \vert f(x) \vert, and h(L) = \sup\limits_{x\geq L} \vert f^{\prime}(x) \vert. for any  \delta > 0, SHOW

h(L) \leq \dfrac{2}{\delta} g(L) + \dfrac{\delta}{2}M.
please helppppp...