How can I justify that   \sum_{n=1}^{\infty}\frac{1}{n}\int_{2\pi}^{\infty}  \frac{\sin  nx}{x}\ dx =\int^{\infty}_{2\pi}\frac{1}{x}\sum_{n=1}^{\infty  }\frac{\sin  nx}{n}\ dx  ?

What I want to do is the following:


  \sum_{n=1}^{\infty}\frac{1}{n}\int_{2\pi}^{\infty}  \frac{\sin   nx}{x}\ dx =\int^{\infty}_{2\pi}\frac{1}{x}\sum_{n=1}^{\infty  }\frac{\sin   nx}{n}\ dx


 = \sum_{k=1}^{\infty} \int_{2k \pi}^{2(k+1) \pi} \frac{1}{x} \Big(\frac{\pi-(x-2k \pi)}{2} \Big) \ dx


since  f(x) = \frac{\pi -x}{2} = \sum_{n=1}^{\infty} \frac{\sin nx}{n} \ \text{for} \  (0,2 \pi] and  f(x+2 \pi) otherwise