Question: Suppose that f:[a,b]→ℝ and g:[a,b]→ℝ are continuous functions such that f(a)≤g(a) and f(b)≥g(b). Prove that f(c)=g(c) for some c∈[a,b]. Intermediate value theorem? Pinching Theorem? I'm not sure on this one.
Follow Math Help Forum on Facebook and Google+
Originally Posted by CountingPenguins Suppose that f:[a,b]→ℝ and g:[a,b]→ℝ are continuous functions such that f(a)≤g(a) and f(b)≥g(b). Prove that f(c)=g(c) for some c∈[a,b]. Use the Intermediate value theorem on
View Tag Cloud