Hello math experts...

Let $\displaystyle X,Y,Z$ be topological spaces.

Let $\displaystyle \pi : X \rightarrow Y$ be quotient map.

Let $\displaystyle f : X \rightarrow Z$ be continues.

Find a necessary and sufficient condition on $\displaystyle f$ for the existence of a continues function $\displaystyle g: Y \rightarrow Z$ such that $\displaystyle g \circ \pi = f $

thanks!