# weaker condition for continuity.

Printable View

• May 23rd 2011, 11:55 AM
abhishekkgp
weaker condition for continuity.
Let $f:\mathbb{R} \rightarrow \mathbb{R}, \, a\in S \subset \mathbb{R}$.Suppose $f$ has the property that:
$x_n \in S, \, x_n \rightarrow a \Rightarrow (f(x_n))$ is convergent. Prove that $f$ is continuous at $a$.

my approach:
Let $(x_n)$ and $(y_n)$ be two sequences in $S$ with $x_n \rightarrow a, \, y_n \rightarrow a$. let $f(x_n) \rightarrow L_1$ and $f(y_n) \rightarrow L_2$. I need to prove that $L_1=L_2$. how do i go about it?
• May 23rd 2011, 01:43 PM
tonio
Quote:

Originally Posted by abhishekkgp
Let $f:\mathbb{R} \rightarrow \mathbb{R}, \, a\in S \subset \mathbb{R}$.Suppose $f$ has the property that:
$x_n \in S, \, x_n \rightarrow a \Rightarrow (f(x_n))$ is convergent. Prove that $f$ is continuous at $a$.

my approach:
Let $(x_n)$ and $(y_n)$ be two sequences in $S$ with $x_n \rightarrow a, \, y_n \rightarrow a$. let $f(x_n) \rightarrow L_1$ and $f(y_n) \rightarrow L_2$. I need to prove that $L_1=L_2$. how do i go about it?

I think this is false. Take for example $\displaystyle{f(x):=\left\{\begin{array}{cc}\frac{ \sin x}{x}&\mbox{ , if } x\neq 0\\{}\\ 8&\mbox { , if } x=0\end{array}\right.}$ , and let

$a\in S:=(-1,1)\subset \mathbb{R}$ .

Tonio
• May 23rd 2011, 01:44 PM
Opalg
Quote:

Originally Posted by abhishekkgp
Let $f:\mathbb{R} \rightarrow \mathbb{R}, \, a\in S \subset \mathbb{R}$.Suppose $f$ has the property that:
$x_n \in S, \, x_n \rightarrow a \Rightarrow (f(x_n))$ is convergent. Prove that $f$ is continuous at $a$.

my approach:
Let $(x_n)$ and $(y_n)$ be two sequences in $S$ with $x_n \rightarrow a, \, y_n \rightarrow a$. let $f(x_n) \rightarrow L_1$ and $f(y_n) \rightarrow L_2$. I need to prove that $L_1=L_2$. how do i go about it?

You can do this by considering the sequence $x_1,y_1,x_2,y_2,x_3,y_3,\ldots$.

Notice that it is not sufficient just to show that $L_1=L_2$. You need to show that this limit is equal to $f(a)$. You can do that by taking one of your sequences to be the constant sequence $x_n=a$ for all n.
• May 23rd 2011, 11:09 PM
abhishekkgp
Quote:

Originally Posted by tonio
I think this is false. Take for example $\displaystyle{f(x):=\left\{\begin{array}{cc}\frac{ \sin x}{x}&\mbox{ , if } x\neq 0\\{}\\ 8&\mbox { , if } x=0\end{array}\right.}$ , and let

$a\in S:=(-1,1)\subset \mathbb{R}$ .

Tonio

a typo error in my question.... i had written $f:\mathbb{R} \rightarrow \mathbb{R}$ while it should be $f:S \rightarrow \mathbb{R}$.