Find the number of zeros of the following polynomial lying inside the unit circle;

f(z)=z^9 - 2z^6 + z^2 - 8z -2

I tried to use Rouche's Theorem

for differentiable f and g and all points inside s

if |f(z)-g(z)|<|f(z)| then

f and g have same zeros in s.

But which of the g(z) functions should I choose? -2z^6 or z^2 or -8z

how can ı determine this?