topology- compactness, interior=empty

I need help with this exercise..(Thinking)

Let $\displaystyle \{ X_\alpha\}_{\alpha \in I}$ be a collection of topological spaces. $\displaystyle X=\prod_{\alpha \in I}X_\alpha$

1)prove: If an infinite number of$\displaystyle X_\alpha$ are non-compact, then any compact subset in $\displaystyle \prod_{\alpha \in I}X_\alpha$ has empty interior. 2)is there a need for every compact set $\displaystyle K\subseteq X$to be dense nowhere in$\displaystyle X$($\displaystyle Int \overset{-}{K}=\emptyset $)?

..I look at the product $\displaystyle \prod_{n \in \mathbb N}X_n$ where all $\displaystyle X_n$ are equal to set $\displaystyle \mathbb R \cup \{c\}$ $\displaystyle (c \notin \mathbb R$) with a topology whose basis consists of sets in form of $\displaystyle \langle a,b \rangle \cup \{c\}, a,b\in\mathbb R$

Thank you!