Hey,
I have a map:
$\displaystyle T: L^{p}(-2,2) \to L^{p}(-2,2) $, $\displaystyle (Tf)(x)=xf(x)$
$\displaystyle T$ maps from $\displaystyle L^{p}(-2,2)$ to $\displaystyle L^{p}(-2,2)$ because:
$\displaystyle \int_{-2}^{2}|(Tf)(x)|^{p}dx=\int_{-2}^{2}|xf(x)|^{p}dx=\int_{-2}^{2}|x|^{p}|f(x)|^{p}dx=?$
How to continue so that it shows that $\displaystyle \int_{-\infty}^{\infty}|f(x)|^{p}dx < \infty$