# Unbounded functional

Printable View

• Mar 28th 2011, 11:12 PM
raed
Unbounded functional
Dear Colleagues,

Could you please help me to solve the following problem:

The space $C^{1}[a,b]$ is the subspace of $C[a,b]$ consists of all continuously differentiable functions. Let $f$ be a functional defined on $C^{1}[a,b]$ given by $f(x)=x^{'}(c),c=(a+b)/2$ where $x\in C^{1}[a,b]$. Prove that $f$ is not bounded.

Regards,

Raed.
• Mar 28th 2011, 11:27 PM
Drexel28
Quote:

Originally Posted by raed
Dear Colleagues,

Could you please help me to solve the following problem:

The space $C^{1}[a,b]$ is the subspace of $C[a,b]$ consists of all continuously differentiable functions. Let $f$ be a functional defined on $C^{1}[a,b]$ given by $f(x)=x^{'}(c),c=(a+b)/2$ where $x\in C^{1}[a,b]$. Prove that $f$ is not bounded.

Regards,

Raed.

I think you can do this on your own. Think about it, what if you created your function to be such that for every $\varepsilon>0$ you create a function $f_\varepsilon\in C^1[a,b]$ such that $\displaystyle f'_\varepsilon\left(\frac{a+b}{2}\right)=\frac{1}{ \varepsilon}$
• Mar 29th 2011, 03:07 AM
raed
Thank you very much.