Let be E a Norm Vectorial space. And F Sub vectorial space of E. Thus, F can be considered as a vectorial space independently of E. And thus, as topological space,. But we know that thisit is both open and closed. For example, the vectorial space of polynomial functions is not closed in the space of continous functions C[0,1] (since every continuous function is limit of a serie of polynomes - Weierstrass theroem). I found no way to find out the failure in the reasoning in de begining of this message. Many thanx for any help explaining where de faillure is.is false