Results 1 to 6 of 6

Math Help - proving a function is continuous with a given topology

  1. #1
    Member
    Joined
    Aug 2008
    Posts
    249

    proving a function is continuous with a given topology

    let f: R -> R be injective where R is given by the cofinite topology. Show that f is continuous.

    so i know that the cofinite topology consists of sets that are either empty or have finite complements. in the case of R, the open sets in the topology are intervals containing + and - infinite while leaving out finitely many terms. to prove that f is continuous i have to show that given any open set V in the codomain, the preimage f^-1 (V) in the domain is also open. i also know that in order for a set to be open in R, there must exist a ball centered at each point and contained within the set for every point in that set.

    i can see intuitively that since f is injective, the cardinality of V is less than or equal that of the preimage of V. and since V is open the preimage of V should be open as well. however that was based on my intuition and probably does not constitute a formal proof. how would you show that the preimage of any V is open?
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member
    Joined
    Apr 2009
    From
    México
    Posts
    721
    It's probably best to use the characterization of continuity in terms of closed sets, which are just finite sets in this case, and use the injectivity.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Member
    Joined
    Aug 2008
    Posts
    249
    so far i've only learned the characterization of continuity in terms of open sets. is it posible to use that to derive the characterization in terms of closed sets?
    Follow Math Help Forum on Facebook and Google+

  4. #4
    MHF Contributor FernandoRevilla's Avatar
    Joined
    Nov 2010
    From
    Madrid, Spain
    Posts
    2,162
    Thanks
    45
    Quote Originally Posted by oblixps View Post
    so far i've only learned the characterization of continuity in terms of open sets. is it posible to use that to derive the characterization in terms of closed sets?

    Yes, it is. Suppose f:X\rightarrow Y is continuous and let F be a closed set of Y, then F^c is open, and so f^{-1}(F^c)=(f^{-1}(F))^c is open in X, therefore f^{-1}(F) is closed.

    Conversely, suppose that F closed in Y implies f^{-1}(F) closed in X. Consider an open set G of Y, then G^c is closed in Y and so, f^{-1}(G^c)=(f^{-1}(G))^c is closed in X. Therefore f^{-1}(G) is open in X i.e. f is continuous.


    Fernando Revilla
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Member
    Joined
    Aug 2008
    Posts
    249
    thanks for the proof!

    now to prove this i need to show that any preimage of a closed set V in R is closed as well. the closed sets in this case are finite sets and since f is injective, the preimage of f must contain the same number of elements or less than the closed sets in the codomain. so the preimages are finite as well and since a ball around any point in a finite set in R necessarily is not contained in the finite set, the preimages must be closed sets. therefore f is continuous.

    would this be the correct reasoning?
    Follow Math Help Forum on Facebook and Google+

  6. #6
    MHF Contributor Drexel28's Avatar
    Joined
    Nov 2009
    From
    Berkeley, California
    Posts
    4,563
    Thanks
    21
    Quote Originally Posted by oblixps View Post
    thanks for the proof!

    now to prove this i need to show that any preimage of a closed set V in R is closed as well. the closed sets in this case are finite sets and since f is injective, the preimage of f must contain the same number of elements or less than the closed sets in the codomain. so the preimages are finite as well and since a ball around any point in a finite set in R necessarily is not contained in the finite set, the preimages must be closed sets. therefore f is continuous.

    would this be the correct reasoning?
    Correct! Put more concisely since f is injective we have that for any C closed in \mathbb{R}_C we have that \#\left(f^{-1}\left(C\right)\right)\leqslant \#\left(C\right)<\infty and so f^{-1}(C) is closed.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Proving the Continuous Function
    Posted in the Calculus Forum
    Replies: 3
    Last Post: December 28th 2010, 02:24 AM
  2. Proving a Function is Continuous
    Posted in the Differential Geometry Forum
    Replies: 4
    Last Post: October 15th 2010, 03:08 AM
  3. Replies: 0
    Last Post: August 31st 2010, 04:38 PM
  4. Proving a function is continuous
    Posted in the Calculus Forum
    Replies: 2
    Last Post: November 18th 2009, 08:25 PM
  5. Proving the Zero Set of a Continuous Function is Closed
    Posted in the Differential Geometry Forum
    Replies: 2
    Last Post: March 2nd 2009, 08:31 PM

Search Tags


/mathhelpforum @mathhelpforum