# Thread: Trig proof -- Complex analysis

1. ## Trig proof -- Complex analysis

Prove that $\displaystyle |cos^2 (z)|+|sin^2 (z)| = 1$ is false if $\displaystyle z=x+iy$ with $\displaystyle y\ne 0$.

2. Originally Posted by JJMC89
Prove that $\displaystyle |cos^2 (z)|+|sin^2 (z)| = 1$ is false if $\displaystyle z=x+iy$ with $\displaystyle y\ne 0$.

Write $\displaystyle \cos z=\frac{e^{iz}+e^{-iz}}{2}\,,\,\,\sin z=\frac{e^{iz}-e^{-iz}}{2i}$ , so

$\displaystyle =\cos^2z=\frac{e^{2iz}+e^{-2iz}+2}{4}=\frac{1}{4}\left[e^{-2y}\left(\cos 2x+i\sin 2x\right)+e^{2y}\left(\cos 2x-i\sin 2x\right)\right]+\frac{1}{2}=$

$\displaystyle = \frac{1}{2}\left[\cos 2x\cosh 2y+1+i\sin 2x\sinh 2y\right]$

$\displaystyle \sin^2z=\frac{e^{2iz}+e^{-2iz}-2}{-4}=-\frac{1}{4}\left[e^{-2y}\left(\cos 2x+i\sin 2x\right)+e^{2y}\left(\cos 2x-i\sin 2x\right)\right]+\frac{1}{2}=$

$\displaystyle =-\frac{1}{2}\left[\cos 2x\cosh 2y-1+i\sin 2x\sinh 2y\right]$ , so

$\displaystyle |\cos^2z|+|\sin^2z|=\frac{1}{4}\left[(\cos 2x\cosh 2y+1)^2+(\cos 2x\cosh 2y-1)^2+2\sin^22x\sinh^22y\right]$

take it from here (and check the above carefully for mistakes)

Tonio

3. Thanks

I got it now.