http://i53.tinypic.com/am6pzq.png

I'm not really sure if I'm approaching this correctly, since I'm not using linearity. What exactly do I need to prove here?

- Sep 30th 2010, 03:36 PMdavismjLinear Subspace of a Banach Space closed if and only if it is complete.
http://i53.tinypic.com/am6pzq.png

I'm not really sure if I'm approaching this correctly, since I'm not using linearity. What exactly do I need to prove here? - Sep 30th 2010, 03:54 PMdavismj
http://i53.tinypic.com/2qsscwz.png

I don't believe that for any linear subspace of a Banach space, every convergent sequence is Cauchy. Maybe I'm wrong? - Sep 30th 2010, 04:13 PMAckbeet
Convergent sequences are always Cauchy. Cauchy sequences always converge in complete spaces (by definition, almost, depending on the author), but they don't have to converge if the space is not complete.

There isn't much to this proof, and I think you're certainly got the general idea. Closedness and completeness, as this proof shows, are pretty much the same thing.