I'd like to show that the Haussdorf-Dimension of the Cantor set is log(2)/log(3).

Although I have some Ideas how to do this, I'm not sure if any of it is correct. A little guidance would be greatly appreciated. I hope you guys are familiar with the terms I use. Otherwise I refer to Hausdorff measure - Wikipedia, the free encyclopedia

My idea was to make an upperbound for \mathcal{H}^s_{\epsilon}(C_n)

Starting with \mathcal{H}_{\epsilon}^s(C_n)\leq (2/3)^n*\epsilon^{s-1}.

Here (2/3)^n is the total length of C_n and \epsilon the maximum diameter of a Cover-element of C_n.

Now we need to find out for which s this upperbound exists, if we let n\to \infty and \epsilon\to 0.

How to do this, I'm not sure yet.

Can anyone help me in the right direction?