I'm trying to evaluate

$\displaystyle \int_{-\infty}^{\infty}\frac{\lambda}{\vert x \vert}$

where $\displaystyle \lambda$ is the Lebesgue measure on $\displaystyle \mathbb{R}$ and the following is what I have done:

Let $\displaystyle f_{n}(x)=\frac{1}{\vert x \vert}\chi_{[-n,n]}.$ Then since $\displaystyle (f_{n}:n\in\mathbb{N})$ is non-negative and increasing, by the Monotone Convergnece Thorem we have

$\displaystyle \int_{-\infty}^{\infty}\frac{\lambda}{\vert x \vert}= \int_{\mathbb{R}}\lim_{n}\frac{1}{\vert x \vert}\chi_{[-n,n]}d\lambda = \lim_{n}\int_{\mathbb{R}}\frac{1}{\vert x \vert}\chi_{[-n,n]}\\=\lim_{n}\Big(\int_{(-n,0)}-\frac{1}{x}\lambda+\int_{(0,n)}\frac{1}{x}\lambda \Big)\hspace{1mm}$$\displaystyle =\infty$,

since the integrals inside the limit notation coincides with Riemann integral.

Am I on the right track?