Universal cover of n times punctured plane

I'm looking for some insight into the relationship between the complex plane punctured times and its universal cover. I understand that the universal cover of the once-punctured plane is the plane itself, with the corresponding uniformizing function being the exponential (whose automorphism group is isomorphic to the fundamental group of the base and to the group of deck transformations of the cover). I understand also that that the universal cover of the twice punctured plane is the unit disc (or upper half-plane), with the elliptic modular function being the corresponding uniformizing function (whose automorphism group ) is once again isomorphic to the fundamental group of the base, and to the group of deck transformations of the cover).

In general, what is the universal cover of the -times punctured plane, and what is the corresponding uniformizing function? I suppose that the universal cover is the upper-half plane for , with a modular function as the uniformizing function. However, this would imply that contains a copy of the free group on generators as a subgroup, which I doubt very much! It's impressive enough that it contains a copy of the free group on *two* generators...

Any pointers are greatly appreciated! (Nod)

Re: Universal cover of n times punctured plane

Hi Bruno,

Did you find a good resolution to this question? It's something that I am quite interested in as well. (I've heard the term Schottky space and Schottky group come up in this context)

Ralph