Results 1 to 2 of 2

Math Help - closed in dual space E* implies closed in product space F^E

  1. #1
    adr
    adr is offline
    Newbie
    Joined
    May 2010
    Posts
    1

    Question closed in dual space E* implies closed in product space F^E

    I am trying to show that if a set C is closed in the dual of E, E*, then it must be closed in F^E (where F = complex numbers or reals)


    So far I've figured that E*is a subset of F^E since E* is the collection of continuous (bounded) linear functionals on E and F^E is all the linear functionals on E.

    Thus, I have to show that E* is closed in F^E.
    I have begun by supposing that there is a net of functions (fa)a in E* converging to a function f. I have tried to show that f will necessarily be bounded, and thus f lies in E* making E* closed.

    I can't seem to get it.

    if each fa (read as f sub alpha) is bounded, then there is an Ma > 0 such that for all x in E |fa(x)|<= Ma.

    since (fa)a converges to f,
    for all neighborhoods N of f, there is a b in the directed set such that for all a>=b, fa is in N.

    I tried for a contradiction by supposing f isn't bounded, but I haven't really gotten anywhere.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor
    Opalg's Avatar
    Joined
    Aug 2007
    From
    Leeds, UK
    Posts
    4,041
    Thanks
    7
    Quote Originally Posted by adr View Post
    I am trying to show that if a set C is closed in the dual of E, E*, then it must be closed in F^E (where F = complex numbers or reals)


    So far I've figured that E*is a subset of F^E since E* is the collection of continuous (bounded) linear functionals on E and F^E is all the linear functionals on E.

    Thus, I have to show that E* is closed in F^E.
    It is not true that E* is closed in K^E. In fact, the closure of E* in K^E is the set of all (not necessarily continuous) linear functionals on E. (I'm calling the scalar field K because I already have too many Fs – see below.)

    Just to make sure that we are talking about the same thing, I'm assuming that the topology on E* is the weak* topology that it has as a dual space, and that the topology on K^E is the product topology. Then the subspace topology that E* inherits from K^E is the same as its own (weak*) topology.

    Let f be a (discontinuous) linear functional on E, and denote by \mathcal{F} the set of all finite-dimensional subspaces of E, directed by inclusion. For F\in\mathcal{F}, the restriction of f to F is a bounded linear functional on F, so by the Hahn–Banach theorem it has a bounded extension to an element of E*. Call this extension f_F. (Sorry about all the different f's here, not a very good choice of notation.) Then (f_F)_{F\in\mathcal{F}} is a directed net in E*, which fairly obviously has the limit f (in the product topology on K^E).

    It's easy to check that the set E† of all linear functionals on E is closed in K^E. It follows from the previous paragraph that E† is the closure of E* in K^E.

    Going back to the original question of whether a closed subset C of E* is closed in K^E, that will certainly be the case if C is bounded (because then C will be weak*-compact and therefore closed in any space that contains it). But in general C will not be closed in K^E.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. closed ball always is closed in the meteric space
    Posted in the Differential Geometry Forum
    Replies: 1
    Last Post: August 27th 2011, 07:25 PM
  2. Extending to closed space
    Posted in the Differential Geometry Forum
    Replies: 2
    Last Post: November 29th 2009, 04:10 PM
  3. Metric Space, closed sets in a closed ball
    Posted in the Differential Geometry Forum
    Replies: 2
    Last Post: November 19th 2009, 06:30 PM
  4. Is a compact space closed?
    Posted in the Differential Geometry Forum
    Replies: 5
    Last Post: May 22nd 2009, 07:53 AM
  5. Closed in a dual space
    Posted in the Differential Geometry Forum
    Replies: 1
    Last Post: March 1st 2009, 01:21 PM

Search Tags


/mathhelpforum @mathhelpforum