Let

f, g, h : A$\displaystyle \subseteq$R$\displaystyle \rightarrow$R be functions such that g(x)$\displaystyle \leq$f(x)$\displaystyle \leq$h(x) for all x$\displaystyle \in$A. Let p be an accumulation point of A: Prove that If limx$\displaystyle \rightarrow$p g(x) =limx$\displaystyle \rightarrow$p h(x) = l; where l $\displaystyle \in$R: Then limx$\displaystyle \rightarrow$p f(x) =l.