Originally Posted by

**h2osprey** Suppose $\displaystyle \sum_{n=0}^{\infty} {a_n}x^n $ converges on $\displaystyle [-R, R]$ Suppose $\displaystyle \delta < R. $ Show that $\displaystyle \sum_{n=0}^{\infty} {a_n}x^n $ converges uniformly on $\displaystyle [-\delta, \delta]$.

Hint given: Pick $\displaystyle r$ such that $\displaystyle \delta < r < R. $ You are given that $\displaystyle \sum_{n=0}^{\infty} {a_n}r^n $ converges, therefore $\displaystyle |a_n|r^n \rightarrow 0$. In particular, $\displaystyle |a_n|r^n \leq C$, where $\displaystyle C$ is independent of $\displaystyle n$.

I am unable to show that $\displaystyle {a_n}r^n $ converges absolutely, while the hint suggests that I should show this. Thanks in advance for any help!