Let w=f(z) be a homomorphic function defined on a domain D. Let $\displaystyle \gamma$ be a smooth curve in D given by z=z(t) with a $\displaystyle \leq$ t $\displaystyle \leq$ b. Let w(t)=f(z(t)). Prove that w'(t)=f'(z(t))z'(t).
Follow Math Help Forum on Facebook and Google+
View Tag Cloud