Give an example of a function $\displaystyle f: [0,1] \to R $ such that $\displaystyle f \in R[0,1] $ [i.e f is Riemann integrable over [0,1]] $\displaystyle , f(x)>0, \ \forall x \in [0,1] , \ but \ \frac{1}{f} $ is not in $\displaystyle R [0,1] $
Give an example of a function $\displaystyle f: [0,1] \to R $ such that $\displaystyle f \in R[0,1] $ [i.e f is Riemann integrable over [0,1]] $\displaystyle , f(x)>0, \ \forall x \in [0,1] , \ but \ \frac{1}{f} $ is not in $\displaystyle R [0,1] $