http://latex.codecogs.com/gif.latex?...e^{n}+e^{-n})}

code: \sum_{n=1}^{\infty}\frac{(-1)^{n}}{\log (e^{n}+e^{-n})}

(Evaluate)

Printable View

- Jan 15th 2010, 12:20 AMstudent1[SOLVED] Possibly simple series question
http://latex.codecogs.com/gif.latex?...e^{n}+e^{-n})}

code: \sum_{n=1}^{\infty}\frac{(-1)^{n}}{\log (e^{n}+e^{-n})}

(Evaluate) - Jan 15th 2010, 02:01 AMShanks
It is a alternating series and $\displaystyle \frac{1}{log(e^n+e^{-n})}\to 0\text{ as }n\to \infty$, thus converges.

- Jan 15th 2010, 08:32 AMstudent1
Thanks, good point. What about absolutely?

- Jan 15th 2010, 04:08 PMmr fantastic
- Jan 15th 2010, 11:25 PMtonio