Hi.

A fast question (i dont want a proof):

Let $\displaystyle (X_1, T_1)$ and $\displaystyle (X_2, T_2)$ two topological spaces. $\displaystyle (X_1, T_1)$ Itīs not Hausdorff.

Let $\displaystyle fX_1, T_1)\to(X_2, T_2)$ a function continuous. Its possible that $\displaystyle (X_2, T_2)$ to be Hausdorff?

I think no.

Thanks