I have this:
f is continuous on a closed interval [a,b] on a real line.
I defined g(x)=f(a+(b-a)x/pi) for x in closed interval [0,pi] such that f cont. on [a,b] is symmetric to function g over a the new interval [0,pi].
My question is how do I show that g is periodic?
Sorry for lack of information. I am derive from the Fejer-cesaro approximation theorem to prove Weierstrass approximation theorem. Fejer-cesaro theorem is periodic 2pi. In order for me to use Fejer-cesaro theorem, I need to do a change of variable of function f cont. on [a,b] to new function and new interval, so I can define the Fourier nth partial sum.
How do I make this new function periodic?