Results 1 to 10 of 10

Math Help - is f(x)=2 continuous for the given domain?

  1. #1
    Member
    Joined
    Sep 2009
    Posts
    104

    is f(x)=2 continuous for the given domain?

    Hi I am wondering if f(x)=2 is continuous for x\in [0,3)\cup \{4\}?
    I'd imagine f(x)=2 would be continuous on any domain, just not too sure.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member
    Joined
    Dec 2008
    From
    Scotland
    Posts
    901
    Quote Originally Posted by dannyboycurtis View Post
    Hi I am wondering if f(x)=2 is continuous for x\in [0,3)\cup \{4\}?
    I'd imagine f(x)=2 would be continuous on any domain, just not too sure.
    Indeed, you are correct. f(x) = const. is always continuous on any domain for x.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Banned
    Joined
    Oct 2009
    Posts
    4,261
    Thanks
    2
    Quote Originally Posted by dannyboycurtis View Post
    Hi I am wondering if f(x)=2 is continuous for x\in [0,3)\cup \{4\}?
    I'd imagine f(x)=2 would be continuous on any domain, just not too sure.

    Well, [0,3)\cup {4} is not a domain because it is not an open set (I'm assuming we're talking about the real line with the usual euclidean topology).
    In this case the question "is f(x) continuous at x=4?" is meaningless since there exists an open neighborhood of 4 where f(x) is not defined and thus limits processes, which are needed for continuity, cannot be carried on with the point 4.

    Tonio
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Member
    Joined
    Sep 2009
    Posts
    104
    but because x exists in [0,3) or x exists in {4},
    doesnt it suffice to show that f(x)=2 is continuous in [0,3). And if so, would it be continous in that interval??
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Banned
    Joined
    Oct 2009
    Posts
    4,261
    Thanks
    2
    Quote Originally Posted by dannyboycurtis View Post
    but because x exists in [0,3) or x exists in {4},
    doesnt it suffice to show that f(x)=2 is continuous in [0,3). And if so, would it be continous in that interval??

    Yes, on that INTERVAL f is continuous, but you cannot talk of conitnuity in an isolated point, meaning: a point which has some open neighborhood around it where the function isn't defined.
    As continuity is defined by means of limits we HAVE to have the possibility to evaluate limits. In your example, with x = 4 we can't do that.

    Tonio
    Follow Math Help Forum on Facebook and Google+

  6. #6
    Member
    Joined
    Sep 2009
    Posts
    104
    ok, so as I now understand it,
    f(x) =2 is discontinuous at {4} because there is no neighborhood around 4 to evaluate the limit with.
    but f(x)=2 IS continuous on [0,3)U{4} because f(x) is continous on [0,3)
    sorry to beat a dead horse but I just to make sure I understand what you are saying...
    Follow Math Help Forum on Facebook and Google+

  7. #7
    Banned
    Joined
    Oct 2009
    Posts
    4,261
    Thanks
    2
    Quote Originally Posted by dannyboycurtis View Post
    ok, so as I now understand it,
    f(x) =2 is discontinuous at {4} because there is no neighborhood around 4 to evaluate the limit with.
    but f(x)=2 IS continuous on [0,3)U{4} because f(x) is continous on [0,3)
    sorry to beat a dead horse but I just to make sure I understand what you are saying...

    I suppose you can say f is disc. at x = 4, but you can NOT say f is cont. at [0,3)\cup \{4\}, because this contains the point 4 !

    Tonio
    Follow Math Help Forum on Facebook and Google+

  8. #8
    Member
    Joined
    Sep 2009
    Posts
    104
    but doesnt the definition of union mean that x exists in [0,3) OR {4}?
    Follow Math Help Forum on Facebook and Google+

  9. #9
    Member
    Joined
    Sep 2009
    Posts
    104
    oh I see nevermind, thanks for the help tonio!
    Follow Math Help Forum on Facebook and Google+

  10. #10
    Super Member
    Joined
    Dec 2008
    From
    Scotland
    Posts
    901
    Quote Originally Posted by dannyboycurtis View Post
    but doesnt the definition of union mean that x exists in [0,3) OR {4}?
    In order for a function to be continuous on some interval, then there must be a neighbourhood around each point in the interval about which limits can be taken which also lie in the interval.

    In your interval, the element 4 does not have a neighbourhood which is also in the interval, so limits cannot be taken about the point x = 4 for the function f(x), because f(x) is not defined on the neighbourhood of x = 4.

    Continuity is a concept that is defined by limits. If a function is continuous, then a forward and backward limit must exist at EVERY POINT in the intervals for which the function is defined.

    In your interval, the function f(x) has no limit whatsoever at the point x = 4, because it is not defined on the neighbourhood of 4.

    So f(x) is continuous on [0,3), but is it not continuous on [0,3) U {4}.

    Mathematically speaking, a function is continuous in the neighbour hood of a point, a if:

     \lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x).

    In your case, the function does not 'approach' 4 through either negative or positive values. It doesn't get 'approached' at all. And hence the limits do not exist, and continuity around the neighbourhood of x = 4 cannot be established because said neighbourhood is nonexistent.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. prove that every continuous function is separately continuous
    Posted in the Differential Geometry Forum
    Replies: 6
    Last Post: November 23rd 2011, 04:57 AM
  2. Replies: 3
    Last Post: April 18th 2011, 09:19 AM
  3. Replies: 3
    Last Post: April 18th 2011, 08:24 AM
  4. Replies: 0
    Last Post: April 15th 2010, 06:48 PM
  5. Uniformly Continuous but not absolutely continuous example?
    Posted in the Differential Geometry Forum
    Replies: 1
    Last Post: March 9th 2010, 11:43 AM

Search Tags


/mathhelpforum @mathhelpforum