Originally Posted by
TTB Hi guys,
I really need help with the following question:
Let A be the infinite countable union of circles with radius 1/n & centres (1/n,0) in Euclidean 2-space. ie - subspace
Let B be the infinite countable union of circles with radius n & centres (n,0) in Euclidean 2-space. e - subspace
Let C be the wedge of countably many circles.
1) Which of these 3 spaces are CW complexes?
2) Attempt to construct contiinuous bijectiive maps between these spaces (if possible) & then show if these are homeomorphisms.
3) Are the any other more "immediate" way of showing any of the spaces are homeomorphic?
I'm completely stuck! :-( Any assistance would be ENORMOUSLY helpful!
Thanks in advance. :-) x