Show a function is continuous at every point in Reals
Let K be greater than 0 and let f : Real numbers --> Real numbers satisfy the condition |f(x)-f(y)| less than or equal to K|x-y| for all x, y in Reals.
Show that f is continuous at every point in c in Reals.
Thank you.
Let K be greater than 0 and let f : Real numbers --> Real numbers satisfy the condition |f(x)-f(y)| less than or equal to K|x-y| for all x, y in Reals.
Show that f is continuous at every point in c in Reals.